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SUMMARY

A detailed description is given of a technique for converting a contour map into

an equispaced grid of points. A full description is given of program MAPGRID which

converts digitized contour data into such a grid of points.

Departmental Reference: Space 586

Copyright
©

Controller H45O London
1980



2

LIST OF CONTENTS

Page

I INTRODUCTION 3

1.1 Objective 3
1.2 Outline of main program 3

2 DIGITIZATION 4

2.1 Digitization of contours 4
2.2 Grid spacing 5
2.3 Author's note 5

3 INTERPOLATION TECHNIQUES 5

3.1 The problem of interpolation 5

3.2 Interpolation requirements 6
3.3 Average tangents interpolation 7

3.3.1 The basic algorithm 7
3.3.2 Constraining the interpolation function near turning points 8
3.3.3 The problem of the single-valuedness of the interpolation

function 10

4 PROGRAM DESCRIPTION 10

4.1 Program options 11
4.2 Contour data formatting 11
4.3 Program operation 12
4.4 Producing the final grid 12

4.5 Alternative version 14
4.6 The problem of interpolation outside the contour set 14
4.7 Checking the program 15

5 USING PROGRAM MAPGRID 15

6 ANCILLARY PROGRAMS 16

6.1 Program EXPAND 16

6.2 Program SECTION 17

7 CONCLUSIONS 17

Appendix A MAPGRID main program 19

Aprendix B Subroutine specifications for program MAPGRID 21

Appendix C Listing of program MAPGRID 31

Appendix D Linear interpolation version of subroutine COORDS 42

Appendix E Programs to check operation of program MAPGRID 43

Appendix F Program EXPAND 44

Appendix G Program SECTION 47
Accession For

Illustrations ATI1o RAr Figures 1-171NTIV CRA&I
Report documentation page DTi TAB inside back cover

Unv~! inced 7
'catlon -

P.; - - --

r t I hut'-,

ri u, i' ' LI' v
"al

.21 (j Or



1 INTRODUCTION

1.1 Obj ect ive

This Report describes a technique for converting a contour map into an equispaced

grid of points. The purpose of the grid representation is to enable the map data to be

handled more easily in a computer and, as such, it is to form the base on which all

operations on the map data are to be performed. It is assumed that the contours repre-

sent some physical quantity and thus that the variable represented by the contour height

is a single-valued function of the map co-ordinates. It is also assumed that the

variable is smooth and continuous.

The technique described here has applications in image processing where, for

instance, it may be necessary to compare (by ratioing) an image and a contour map. A

grid representation is also an essential prerequisite for degrading the spatial resolu-

tion of a contour map by convolution, thus enabling contour maps having different

resolutions to be compared at a common resolution. These and other applications of this

technique are to be described in a subsequent report.

Included in this Report are discussions of the problems associated with the digiti-

zation of a contour map and those of interpolation in general. The method used, the

interpolation algorithms and the reasons for their use are described in detail. Also

described are two operations which may be required to be performed on a grid; those of

expanding (or contracting) the number of data points in the grid, and the construction

of cross-sections. Listings of all programs, which are written in computer independent

ANSI FORTRAN V, are given.

1.2 Outline of main program

Program MAPGRID transforms digitized contour data into a rectangular grid of

points. The program takes two orthogonal sets of cuts across the contour map (see Fig 1);

the points of intersection between these grid lines define the points at which interpo-

lated data is required. For each grid line the points of intersection of the line with

contours are calculated and then interpolation is carried out along the grid line to

obtain values at the grid points lying on the line. Also produced are weighting values

reflectinv the ,ontidence in the interpolated values. This procedure results in two

grids of points being obtained corresponding to the two sets of cuts, together with two

grids containing the associated weighting values. These weighting values are used to

combine the grids to produce the final grid.

It is necessary to take two sets of cuts since it may be that some contours run

parallei to one of the sets of cuts and thus would be ignored by that set unless they

f#-Il exactly on grid lines. Contours missed by one set of cuts are therefore incor-

porated in the orthogonal set. In this way the orientation of the cuts with respect to

the contour map is not important, whilst it may be crucial if only one set of cuts were

to be taken.
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2 DIGITIZATION

2.1 Digitization of contours

In general, the investigator will not have the contour information already digi-

tized, but rather will only have a paper copy of the man, thus necessitating the digi-

tization of the contours. There are several reasons why the contours should be digitized

rather than digitizing along the grid lines that the computer program is going to use:

(i) It is very difficult to determine accurately the point of intersection of a

grid line with a contour if the two cross at a very oblique angle.

(ii) Digitization around a contour is often much easier if a manual digitizing

table is to be used, since the exact position of digitized points along a contour is not

important, whereas the exact point of intersection between a grid line and a contour is

much more important.

(iii) If in the future it is required to generate grids at other larger spacings,

then it is not necessary to redigitize the map.

(iv) It is easier to check for any errors in the digitized data if the digitiza-

tion is performed around contours, because the contours can easily be plotted and com-

pared with the original. With the alternative method a complex contour threading

operation would have to be performed before the contours could be plotted, which would

in itself give rise to some differences with the original contours.

It is necessary for the investigator to decide the interval at which points on a

contour should be digitized. The evaluation of this interval involves an estimate being

made of the interval along a contour that can be represented by a straight line. This

interval is dependent upon the grid spacing and the curvature of the contour in question;

the smaller the grid spacing or the greater the curvature of the contour, the smaller

this interval must be in order to represent the contour to the required accuracy. More

precisely, if d is the digitization interval, r is the radius of curvature of the

contour (which generally is a function of position along the contour) and s is the

maximum permissible deviation of a straight line, joining two points on the contour,

from the contour, then d / 8€rs , where d is such that the angle the contour turns

through is small. The author has found that for his work it is adequate that s be

half the grid spacing, but this may not be acceptable for all applications.

If the digitization interval is greater than d then the contour is under-

digitized, and if it is less it is over-digitized. The only consequence of the latter

is that the number of data points describing the contour is greater than necessary. The

contour fitting algorithm (described in section 3.3.3) is considerably better than

linear interpolation and is adopted to make a 'best' estimate, which is necessary with

under-digitized data.

The digitization of contours can take either of the following forms (amongst

others):

(i) Constant separation between data points.
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(ii) Variable density system with the interval depending upon the curvature of

the contour. This reduces the number of points required to describe a contour.

If it is decided to opt for a constant separation between data points then the map

will be correctly digitized if the evaluation of the digitization interval is based upon

the smallest radius of curvature of any part of any contour. The variable density

method requires a continual evaluation of the curvature of the contour and is best

suited to automated digitization. If the digitization is being performed manually using

this method then the investigator must make a subjective estimate of the required

digitization interval.

2.2 Grid spacing

The main information content of a contour map is contained in the relative posi-

tions of the different contours and the large scale features shown by them, rather than

in any small scale detail that may be shown by individual contours. Thus to retain the

main information content when transforming a contour map into a grid, the grid spacing

must be half the value of the minimum separation between any two contours or of large

scale loops of the same contour. Any detail on a scale smaller than this will not be

contained in the grid. More generally, the grid spacing should be at least half the size

of the smallest feature of interest.

2.3 Author's note

The above discussion is intended to illustrate some of the basic problems involved

in digitizing contours. It is not intended to be an exhaustive or highly rigorous

treatment of the subject.

3 INTERPOLATION TECHNIQUES

3.1 The problem of interpolation

It is often desired to estimate the value of a function, which *s sampled at cer-

tain discrete points, at some intermediate points. This process is known as interpola-

tion. Although any set of data points can be interpolated by an infinite number of

different functions, one normally requires that interpolated values are reasonable. What

is believed to be reasonable depends upon the laws and processes underlying the data

values. It must be realised that unless a precise mathematical function expressing those

laws can be formulated, then no method of interpolation can accurately reproduce the

missing data points. In many instances it may be that whilst the nature of the processes

are understood they are not expressed in mathematical form, eg surface topography con-

sidered as an outcome of geological, climatic and cultural factors. In such instances it

is not possible to distinguish analytically and quantitatively between the desirability

of different algorithms. Instead, the choice has to rely on the judgement of the inves-

tigator himself, 7> some rationalisation of a comparison betweer, an achieved interpola-

tion value and a subjective impression of what the value would have been at that point.

In cases where the nature of the underlying processes and laws are not known the normal

- criteria of smoothness and simplicity have to be adopted. These are conditions which are
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i-titLvP1- aesirable in the absence of detailed information as to the nature of the fit

required.

Interpolation functions can be of two types: local or global. A local function

uses only data points near to the point at which an interpolated value is required,

eg linear interpolation. A global function, however, utilizes all of the data points in

the data set, eg cubic spline interpolation. With this function distant data points make

a contribution to the interpolated value. Also, if the data set contains a large number

of points then this type of function generally involves a large amount of computation.

In cases where there is a mathematical function expressing the variable it may be that a

global function is the most appropriate, but, in instances where the only requirements

are for smoothness and simplicity, then a local function can be adopted. Indeed, the

adoption of such a requirement is desirable if there is no knowledge of the underlying

processes; the adoption of a global function, whereby distant data points can affect the

interpolated values, unnecessarily implies more correlation between data points than is

warranted. Obviously if it is known that there is no correlation between near and dis-

tant data points then a local function must be adopted.

The suitability of a particular function is also dependent upon the density of the

data points. For very closely spaced data the nature of the interpolation function is

largely unimportant and it may be that linear interpolation is entirely appropriate. In

general, the more widely spaced the data the fewer functions will prove acceptable. A

further (practical) consideration is the amount of computation involved with different

functions if large numbers of data points and interpolated values are required. Thus a

compromise may have to be made between the suitability of a particular algorithm and

maintaining the amount of computation at a manageable level.

In choosing an interpolation function it should be realised that in general no

method of interpolation is precisely accurate except at the points through which the

function has been fitted. If little is known about the exact properties of the variable

involved, then the assessment of the suitability of any interpolation function is largely

left to the investigator's intuition. Thus no general rule as to the applicability of a

particular function can be given, so each problem must be considered individually.

3.2 Interpolation requirements

There are two different interpolation procedures that have to be carried out:

(i) Interpolation along a contour.

(ii) Interpolation along a grid line using contour cut data.

As mentioned earlier, the choice of an interpolation function is dependent upon the

density of the data. For interpolation around a contour, linear interpolation will be

appropriate if the spacing between the data points is sufficiently small; however, if

this is not the case, a more appropriate function is required. This function should

possess the following properties:
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(i) Continuous.

(ii) Continuous first derivative.

(iii) Local.

(iv) Independent of the co-ordinate system.

The first two requirements are those normally adopted where no knowledge of the

underlying laws and processes is assumed and they are appropriate here, because contours

are expected to be smooth and continuous. Since it is to be taken there is no a priori

knowledge of the properties of the variable involved, it is required that the interpola-

tion algorithm be local rather than global, ie dependent only upon the data points near

to the points at which interpolated values are required. This also means that the

interpolation function is going to be reasonably efficient for implementation on a com-

puter. The fourth requirement is introduced because, for contours, the co-ordinate

system (generally) does not have any significance for the variable involved, thus the

shape of an interpolated curve should be independent of the orientation of the axes of

the map co-ordinate system. The choice of a suitable function for contour data is

further complicated in that, in cartesian co-ordinates, infinite gradients (dy/dx

can be encountered, and the function may have to be multi-valued under certain

circumstances.

When interpolating intermediate values along grid lines, infinite gradients and

multi-valuedness will not be encountered and there is no need for the function to be

independent of the orientation of the co-ordinate system because the choice of axis for

the contour 'height' is not arbitrary; no other choice of axis could reasonably be

adopted for physically realisable data. Thus for interpolation along a grid line a

function is required that is continuous, with a continuous first derivative and is

local. In addition, the function must be constrained at turning points (ie maxima and

minima), so that interpolated values do not reach a neighbouring contour level.

With these considerations in mind, it was decided to adopt an average tangents

form of interpolation.

3.3 Average tangents interpolation

3.3.1 The basic algorithm

The method, which is applicable to any data set for which y is a single-valued
function of x , is illustrated in Fig 2. T. is the connection vector between adjacent

data points and the tangent of the angle between the positive x axis and T. is given
1

by:

tan(O.) - i i = 1, 2 ....... n-I
x i+l xi

where n is the number of data points in the data set.

C



8

An average is now taken of pairs of consecutive tangents as follows:

tan(6.1 ) + tan(i.)
A. - i =2, 3,.......,n- I

For the first and last intervals:

A = tan(6 ) An = tan(n l )

The average tangent A. represents the mean gradient at the ith data point. Since

an interpolation function is required that is continuous with a continuous first deriva-

tive the function can be represented by a third order polynomial between points i and

1 + 1 . ."

y = a(x - x.
3 

+ b(x - x.)2 + c(x - x.) + d
1 1 1

The coefficients of the polynomial can be found by choosing the first derivative

of the polynomial at the points i and i + I as being the values of the average tan-

gent at these points, whence:

A i(xi+ - xi) + A i+(x i+ - xi) - 2(yi+ - yi
)

a (xi+ I - i)

3(yi+ - yi) - 2Ai(xi+ - xi) - A+l(X+ I - xi)

b = (x i 1 - xi) 2

c A.
1

d =Yi

With this method a different third order polynomial is fitted to each interval.

3.3.2 Constraining the interpolation function near turning points

The interpolation function for contour cut data has to be modified so that inter-

polated values remain within the interval defined by the two points between which the

function is valid, or, if this interval is zero, do not reach a particular value.

Fig 3a&b (bold lines) illustrates cases where such modification is required. The x and

y values at the turning points (denoted by subscript t ) are obtained from the

equations:

2
O = 3ax 4 2bx + c

t t

and y = ax + bx
2 

+ cx + d
t t t

If both values of xt  lie between x i and x i+ then the situation is as

illustrated in Fig 3a, and if only one value of x satisfies this criterion then the

situation is as depicted in Fig 3b. The former case will be discussed first.
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If both values of yt lie between yi and yi+l the interpolation function is

not modified; otherwise the range is divided into three, defined by the points given

below, and new interpolation functions fitted.

x = x i  A = A.i y = Yi

x = Xtl A = 0 y = Yt1  if Ytl 'Yi+

y = yi + e(Yil - Yi) if Yt| Yi+!

x = xL2 A = 0 y = Yt 2  if Yt2 Yi

Y = Yi+l - a(Yi+l - Yd if Yt 2  Yi

x = xi+ 1  A = Ai+ I  Y = Yi+l

A is a positive constant less than I such that y < yi+l for the precision with

which interpolated values are required. Generally a = 0.99 is a suitable choice.)

If the new interpolation function does not remain between Yi and yi+l (as

illustrated in Fig 3a by the dashed line) then the interpolated y values near the

turning point that lie beyond either yi + a(Yi+l - yi) or yi+l - a(Yi+l - Yi )

whichever is appropriate, are set to that value. This situation will arise if

Ai.• 3 , a condition that for most types of data should rarely occur. TheAXii

procedure just described gives rise to discontinuities in the gradient, however in

practice since interpolated values are required at discrete points this somewhat

alleviates the problem.

If there is only one value of xt  in the range xi  to x i+I it may be required

that interpolated values are not to exceed a particular value of y , say yo (ie the

next contour level). If the interpolation function does not reach y then the func-

tion remains unchanged, otherwise two new functions are fitted using the following

points:

x = x. A = A.i Y = Yi

x = xt  A = 0 Y = Yi 
+ 

1(yo - Yi)

x = xi+ I  A = A i+ Y = yil

If the new function does not remain between y. and v. + ,(v - v.) (as illus-
1 'I 'o LI

trated in Fig 3b by the dashed line), then interpolated values lying beyond

yi + a(Y 0 yi) are set to that value. It can be shown that for contour ,t data,

where Yi y i+ P the interpolation function must take the form shown in Fig 3b

(Ur remain above or below yi between x. and xi+l ) since A. and Ai+ l have

opposite senses (if one is positive the other is negative; zero can be regarded as posi-
tive or negative depending upon what is necessary for Ai and A i+ to be of opposite

sense).
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3.3.3 The problem of the single-valuedness of the interpolation function

The average tangents algorithm is not independent of the orientation of the

co-ordinate system and in some cases the algorithm fails completely, : when infinite

gradients are involved, when y is a multi-valued function of x . This problem can

however be overcome. Rather than considering y changing with respect to x ,

x and y are considered independently as changing with respect to the separation (s)

between adjaceo- data points.

Define

s. (xi+l - xi) + (Yi+ l - y)2) i = 1, 2 ........ n -

xI - x. y - Yi

m. (x) = and m (y) - id 1
1 S. 1S.

1 1

The average tangents algorithm can now be applied to x and y separately as a

function of s. with parameters m. being substituted for tan(a.) Two equations1 1 1

are thus obtained:

3 2
x= as +b s +cs +d

x x x x

and

3 2
y = as +b s +c s+d

where s ((x - ) + (y - yd)2

Thus to derive the y value corresponding to a particular x value, the value of

s corresponding to the x value is found by solving the first equation (with the condi-

tion that 0 s c s. ), and then substituting the value for s in the second equation

to obtain y

With this procedure the algorithm never fails because 'infinite' gradients are

never encountered since s.i > 0 (si = 0 corresponds to two adjacent data points being

coincident). The algorithm is independent of the orientation of the co-ordinate system

since x and y are treated in exactly the same manner as a function of the

co-ordinate free quantity s

4 PROGRAM DESCRII'TION

Details of the main program such as dimensions of arrays, initialisation of para-

meters, and program units called are given in Appendix A. Detailed specifications of

all subroutines are given in Appendix B, and a complete program listing is given in

Appendix C. In the program listing the parameters initialised at the start of the main

program are those for the example discussed in this Report.
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1 Program 1i01nS

Limits to the allowed values of interpolated map data have to be set. If no limits

are to be placed on interpolated values then the parameters setting the limits should be

set so that they are well away from any of the contour values and anticipated interpo-

lated values. The parameter FRACTN sets how closely interpolated values can approach the

next contour level at turning points. It is recommended that this be set at 0.99, as dis-

cussed in section 3.3.2, so that interpolated values just fall short of the next level.

Maps may be classified into two categories for the problem being considered here,

closed or open. A closed map is defined to be one where all contours start and finish

within the region being considered (as in Fig 1) and an open map is one where only some

contours start and finish within the region (as in the area enclosed by the dashed rec-

tangle in Fig 1). The operation of the program is slightly different for the two types

of map, this being related to combining the values obtained from the two sets of grid

lines and with the problem of interpolation outside a dataset. These are discussed in

more detail in sections 4.4 and 4.6 respectively. The two modes are selected as follows:

(i) Closed maps. IROUTE = I. ZE = value to which all points beyond the outer-

most contour are to be set.

(ii) Open maps. IROUTE t I. ZE = value to which all points through which pass

x and y direction grid lines that do not intersect any contours.

4.2 Contour data formatting

The program requires that the contour data be in a specific form. Each contour

should have a header which should then be followed by the x and y co-ordinates of

each point, there being one point per line. The header contains three parameters: the

contour value, the number of points in the contour and the type of contour. The first

two parameters are self-explanatory but the third requires further comment.

Contours can be of two types, either closed such as a circle or open such as a

line. It is necessary to know which of these types a contour is because of the problems

associated with interpolation in the end intervals of a dataset. The average tangents

algorithm (section 3.3.1) sets the average tangent at the end data points to be the

gradient between the two points forming the end interval, but for the case of a closed

contour a better estimate is possible because the data points beyond the end interval of

the dataset are known. Thus for closed contours (for which it is assumed that the first

and last points have the same co-ordinates) the first two points are also added to the

end of the dataset and then interpolation is only considered between the second and

second to last points on the contour. This procedure cannot of course be carried out

with open contours, yet it would be convenient if both types could be treated in the same

manner. Thus for open contours an extra data point is added at each end using linear

interpolation so that the average tangents at what are now the second and second to last

points remain the same. Therefore, after a contour has been read in, it is reformatted

- in one of the above ways by subroutine IDENT.
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4.3 Program operation

The program starts by initialising all the constants and calculated the x and y

values of the grid lines. The values of the points in the grid produced by taking cuts

in the y direction are then calculated.

Contours are read in and processed one at a time. The contour data is first

checked by subroutine CHECK to ensure that no two adjacent points have the same

co-ordinates, which would cause the contour interpolation algorithm to fail. The

contour data is then reformatted, as described above, by subroutine IDENT. Following

this, subroutine COORDS is called to calculate the points at which the y direction

grid lines intersect the contour; the algorithm described in section 3.3.3 is used here.

This procedure is repeated for each contour, after which subroutine HEIGHT is called to

sort the different contour values, together with the upper and lower limits to the map

data, into ascending order. Each of the y direction grid lines is now taken in turn.

Subroutine SELECT is called to obtain all the points of intersection of contours with a

chosen grid line and these points are then arranged into ascending order in the y

direction by subroutine ORDER. Subroutine CHECK2 is then called to ensure that no two

adjacent data points have the same y value, which would cause the subsequent inter-

polation algorithm to fail. Subroutine AVTAN calculates the values on the grid along

the grid line using the average tangents algorithm described in sections 3.3.1 and

3.3.2. The associated weighting factors for each of the grid points are obtained by a

call to subroutine WEIGHT.

The above procedure is repeated for the grid lines in the x direction, the only

differences being that subroutine HEIGHT is not called, and as each new line is gener-

ated it is combined with the first grid to produce the final grid. On completion of

this the final grid is then written to a file with the data being written from the top

of the grid downwards, ie as a series of x direction grid lines in descending values

of y .

4.4 Producing the final grid

Associated with each interpolated value is a weighting factor. The weighting

factor reflectF the fact that an interpolated value is most likely to be reliable where

the original data is most closely spaced. The weighting factor is given by:

W x = Jx i+ I - xil

where the point at which an interpolated value is required lies between xi and xi+1

If the point lies outside the range of the dataset then W = 0 .x

Three methods of combining the two grids were investigated:

(G + G )
(i) Gf x 2f 2
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(GxW + G W)
GO Cf y (W + W > 0)

(W + W )
x y

(G + G y ( W )
f x y

(C +WxC
+ W(iii) Gf = Gx  (W > W

2x y

where G and G are the values at a particular grid location produced by taking cutsx y

parallel to the x and y axes respectively, W and W are the corresponding
x y

weighting factors, and Gf is the final value.

The desirability of each of these methods was judged on the difference between the

grid obtained from a series of contours of a two dimensional Gaussian and a grid derived

analytically. The contours were produced at intervals of 25 between 25 and 225 and both

grids were set to ( beyond the outermost contour. Figs 4 and 5 show the two grids pro-

duced by the two sets of cuts and Figs 6, 7 and 8 show the differences between the pro-

gram grid and the analytic grid for the three methods; differences greater than 191

are set to 9.

Fig 6 lends weight to the reasoning for the weighting factors used in methods 2 and

3, since the differences are a minimum 450 away from the X and Y axes, where the

spacing of the original data is the same for each set of grid lines. Fig 7 shows a con-

siderable improvement in the agreement but suggests that considerably greater weighting

should be given to the larger of the two weighting values. This is taken to the extreme

in the third method, producing a further improvement.

It is the third method, with some modification, that has been adopted to combine

the values produced by the two sets of grid lines. The weighting values are calculated

as before, except that if Ai = A i+ = 0 and zi = z i+ then W = -1 , and if the grid

line under consideration does not intersect any contour then W = -2 . The method for

combining the values is dependent upon the type of map, and is as carried out according

to the following sets of rules:

Closed maps Open maps

Gf (G + C ) G G

C = 2 ( =1 W ) G f (G (W = W)
fx y 2x y

G = G (W = -2)f x x

Gf =C y (Wy =-2) G = Gx (Wx = -1, Wy = -2 or 0)

G f G y (Wx
= 
0) f G y (W y = - 1, Wx = -2 or 0)

G f = Gx  N Y ) G f = G x (W x > W )

f yy f x x xy

G G (Wx W
Gf G x (Wx > Wxy y y

G f G C (Y > W2)C Y 1>4
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The extra conditions arise from the following considerations. In Fig 9a the grid

line yy intersects the contour with height 2 at points a through e . Interpolated

values along yy between b and d are given as 2 but, by inspection, the variable

should be less than 2 between b and c and greater than 2 between c and d . The

correct sense for the interpolated data is obtained by using interpolated data produced

by the orthogonal set of grid lines. If the weighting of a point is zero then it lies

outside the dataset defined by the intersection of the associated grid line with con-

tours, te for a closed map the point lies beyond the outermost contours. The value of

the final grid at that point should therefore have the value ZE which is to be assigned

to such regions. Applying the same procedure to open maps would produce undesirable

effects, for example all values within the shaded area of Fig 9b would be the same.

The final grid produced by combining those shown in Figs 4 and 5 with this method

is shown in Fig 1O.

4.5 Alternative version

The interpolation algorithm described in this Report for carrying out interpolation

with contour data is adopted so as to give a 'best' estimate. However, if the contours

have been digitized such that linear interpolation is appropriate, an alternative version

of subroutine COORDS employing linear interpolation is available. This subroutine is

listed in Appendix D and can be simply substituted for that given in Appendix B, omitting

subroutines INTERP and CUBIC which are no longer required.

4.6 The problem of interpolation outside the contour set

In the case of closed maps, the user of the program is required to decide what

values should be assigned to grid points lying outside the outermost contour. Two poss-

ible options are:

(i) Setting all values to the same value, say that of the base level or the

outermost contour.

(ii) Extrapolating smoothly to some defined level.

The first option is easy to implement and is available with this program, but the

second is much more difficult. It should be realised that one cannot reliably extrapolate

beyond the outermost contour unless the nature of the variable in the region is known. It

may be that the user knows that the variable tends to some base level and so wants to

extrapolate smoothly to this level for 'aesthetic' reasons. In this situation one very

satisfactory method is for the user to define a 'false' contour beyond the outermost con-

tour, where it is estimated that the variable reaches the base level, define a second

false contour (the shape of which is not important) outside the first and then run the

program with all values beyond the false contours being set to the base level. The

second false contour ensures that along a grid line the interpolation curve will have a

gradient of zero when it reaches the base level and that areas of constant value do not

occur in the region between the first false contour and the outermost contour of the ori-

ginal data. (This latter point is discussed in more detail in section 5.) The difficulty

of trying to extrapolate analytically is that the contours defined by the extrapolation

routines may be far from smooth, which is undesirable if the original map contours are

smooth.
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If the first of the above options is applied to open maps, then the areas enclosed

by a corner of the map and the contour closest to that corner, will be areas of constant

height. Thus, if possible the user should enlarge the area over which contours are

digitized, such that the required area is contained within the final grid but does not

encompass any of the areas of constant height occurring at the corners.

4.7 Checking the program

Two programs are listed in Appendix E to enable a user to test program MAPGRID.

The program DRIVER! will produce the contour data that was used in running MAPGRID to

produce the grid shown in Fig 10. Program DRIVER2 will produce the same grid analytic-

ally, the difference between the two being that shown in Fig 8.

5 USING PROGRAM MAPGRID

For most contour maps that it is anticipated that a user will encounter the method

described in this paper will work well. There are, though, several situations where the

resultant grid is not particularly reliable. Here some examples of this will be

discussed together with some methods for overcoming the difficulties.

In Fig 8 the greatest difference between the interpolated and analytic grid is 5,

compared with a contour interval of 25, which generally would be considered to be good

agreement since no a priori knowledge of the variable is assumed, other than it be

smooth and continuous. However, it is worth examining a diagonal cross-section which

passes through the centre of the grid. The resultant curve (which is produced by pro-

gram SECTION described in section 6.2) is shown in Fig 11, where it can be seen that

there is a slight 'pecularity' in the curve near contour level 200. The cross-section

is at 450 to the two sets of grid lines and it is evident that if the cross-seation had

been taken parallel to a set of grid lines the feature would not occur. The reason for

the occurrence of this feature can best be illustrated by reference to Fig 12. For grid

line aa the interpolated values in the range bb become increasingly unreliable as

bb , and hence d , increases. Interpolated values are most unreliable for the largest

values of d which satisfy the condition that d be less than r2 - r, , but interpo-

lated values in the interval bb are not incorporated in the grid if the weighting of

the points associated with the orthogonal set of grid lines is greater. The weighting

values associated with the final grid shown in Fig 10 can be seen in Fig 13. The

weighting values indicated by 1 lie near point X in Fig 12. By inspection it can be

seen that for certain values of r2 and r, . X does not lie inside r2 , the

criterion for this being that r 2/r 1 4F . This is why no other feature similar to

that which occurs at contour level 200 exists on the cross-section, ie

r17 5  r 200 168
r,5= 1.316 whereas r2O . 1.681
r 200 r 225

where the subscripts indicate the contour heights. Thus, wheni taking a series of cuts

across a map it is preferable to take these parallel to a set of grid lines.
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Another difficulty which may be encountered is best illustrated by reference to

Fig l4a. In this figure there are two sets of closed contours indicated by A and Hi

set A consists of three contours and set B of only one contour. By inspectien it

can be seen that within the contour of set I the variable is greater than I and less

than the next contour level of 2, and outside sets A and B the variable is less

than I but greater than or equal to the base level of 0. It is not possible however to

make any reliable estimate as to the magnitude of the departure of the variable from I ir

these cases. Fig 14b&c indicates the reliability of interpolated values obtained by

taking cuts across the map in the x and y directions. Fig 14d shows the values

obtained after the two grids have been combined, from which it can be seen that

reliable information as to the shape of the lowest contour is lost. The contour with

value 2 is correctly described and all interpolated values within it are considered

reliable.

The lowest contour level and the sense, although not the magnitude, of the inter-

polated data can be correctly described using the following method. The contour map is

considered as consisting of two separate contour maps, these being the contour seti

A and B . Another contour with a value between 0 and I is drawn outside the two sets

as shown in Fig 15. If program MAPGRID is now run (IROUTE set to I, ZE set to the base

level of 0), the resultant grid will be reliable for grid values greater than or equal to

1. It is suggested when drawing the false contours that the closer the chosen contour

level of the false contour is to the value of the outermost contour the closer the false

contour should be drawn to that contour. In drawinp a false contour close to the outer-

most contour a user is most likely to estimate accurately the behaviour of the variable

beyond the outermost contour. This procedure of drawing false contours is recommended

even if the contour map shown in Fig 14a were to consist only of contour set A , since

from inspection of Fig 14d certain parts of the interval between contour levels I and 2

contain areas of constant height not implied by the data.

The above discussion is by no means exhaustive, but is merely included to indicate

some problems which can be encountered and how it may be possible to overcome them.

Clearly the user should study any map before using the technique described in this

Report to ascertain whether it is desirable to introduce any false contours or to con-

sider the map in several parts.

6 ANCILLARY PROGRAMS

Two further programs have been written to carry out operations on the grid pro-

duced by program MAPGRID. One of the programs expands the number of data points in the

grid whilst the other enables a cross-section to be taken through it.

6.1 Program EXPAND

One of the requirements that the author has is to display the grid on a TV moni-

tor so as to visually inspect the data. The number of pixels required to fill the

screen has been 512 x 512, a number considerably greater than that needed in other
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,,,mpui Ir Jr,,,.s i Ig ,,I the. grid. This program has therefore been written to expand (or

,ont ra, t ) hin, niumbe.r ot dat a points in either or both the x and y directions. The

dititrtet cxpinsi,n tactors tor the two directions means that the aspect ratio (width/

lt. ight I ,I ht grid -iii be kItered so that the resulting image appears correctly pro-

p,,rtio d ,,t a IV mon itor (normal aspect ratio of 1.33).

(are hls to he exer, ised when interpolating data that has already been interpolated.

III gk.nural it is aicet-ptvtd that in such instances it is best to use the same interpolation

algorithm as was used to produce the interpolated data. Thus in this program the average

t,ingtenltS .1',Orit ho 11 se, t ion 1. 1. was used, but it omits the 'logic' which prevents

data at turling points reaching the next contour level as information concerning the next

,ontour level is .i,.t contained in the grid.

Ph. t rat )I the program is straightforward, the user only having to specify

tht expinsin i , tor required in each of the directions. The number of points down each

, ,Iumn ,,I th, grid is tir~t adjusted to the required number and then the procedure is

repited 1,,r cabI I nt, e,ch I inu being written to an output file as it is computed. A

des, ripti - mnd i I ist ing ,t tilt, program is given in Appendix F.

P'rogram SA T ION

:\ ,,,, requireumnt is to look at a section across a grid. This program enables

i'.' r,,s-s,, t ion ii an dir.cti On to be taken. Again, for consistency, the average tan-

S.nt s l,,r i thim is U sed for interpolat ion.

I'hei ttkthtd adopttd is as follows. The co-ordinates at which interpolated values

along the cut are required are calculated from the co-ordinates of the two ends of the

,ut and thit number ot points required in the cut. If the number requested is less than

two then it is ,issum.,i that points are required at the same interval as the grid spacing.

Values at the required poittts (* in Fig 16) are evaluated as follows. Four points (o)

are calculated with the average tangents algorithm using the four points linked by the

dashed lin'. These four pOitlts, linked by the dotted line, are then used to obtain a

value, at tite required point (*). This procedure is then repeated in the orthogonal direc-

t i, and a second estimate Obtained. The final value is taken as the average of the two

estimates. II pratic it is found that the difference between the two estimates is

insignificant if the grid has been produced by program MAPGRID. With this method, inter-

polated values cannot be obtained in the end intervals, so values required in these

intervals art initially ignored and only those for which the above method is applicable

are derived. The values required in the end intervals are obtained from linear extrapola-

tion Of the data previously derived.

A description and a listing of the program is given in Appendix G.

7 CoNCLUSIONS

This Report has described a technique for converting digitized contour data into

an vquispaced grid of points, and a computer program MAPGRID which performs this trans-

formation has been included. It should be realised that the computer programs described

in this Report are not designed either for maximum efficiency or minimum storage require-

ments. They are included so that the reader can use them to assess the technique and are

written for clarity so that they can easily be modified if required. Some applications

of this technique are to be described in a subsequent report.
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Appendix A

MAPGRID MAIN PROGRAM

A.I Function

The main program initialises constants, supervises the flow, controls all input

and output and combines the data from the two sets of cuts to produce the final grid.

A.2 Dimensions of arrays

F 4 maximum number of points in any contour

Y maximum number of points of intersection of a set of grid lines with the contours
Z

A
S maximum number of contour crossings of any grid line
W n

U number of grid lines parallel to the y axis (IDIM)

%V number of grid lines parallel to the x axis (JDIM)

WT the larger of IDIM and JDIM

H number of contours +2

AA ID IM , ID II%.
WA!

A.3 Constants to be initialised

MAX maximum number of contour crossings of any grid line (= dimension of A, S and W)

MAX maximum number of points of intersection of a set of grid lines with the con-
tours (= dimension of X, Y and Z)

IDIM number of grid lines parallel to the y axis

JDIM number of grid lines parallel to the x axis

IROUTE control parameter: = I for closed maps, *1 for open maps

ZE value to be assigned to points outside the contour map

W'" grid spacing

XST x co-ordinate of the origin of the grid

YST y co-ordinate of the origin of the grid

HMIN minimum allowed value of map data

HMAX maximum allowed value of map data

FRACTN normally set at 0.99, see section 3.3.2

P~MX1O JPAMc BLANK-Mo? nuL
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A.4 Program units

CHECK ensures that no two adjacent data points are coincident

IDENT reformats the contour data

COORDS evaluates the co-ordinates at which y direction grid lines intersect a

contour

NFIX gives the integer value of a number, the value being rounded down to the lower

integer

INTERP calculates the co-ordinates at which a line parallel to the y axis intersects

a contour between two points

CUBIC finds the roots of a third order polynomial in x in a specified range

HEIGHT sorts the contour values into ascending order

SELECT selects data points with a given x co-ordinate

CHECK2 ensures that no two data points on a grid line are coincident

ORDER sorts values in an array into ascending order

AVTAN calculates equispaced grid points along a grid line

AVTAN2 performs average tangents interpolation between two data points

WEIGHT generates weighting values associated with interpolated data points.

In addition the following standard FORTRAN functions are called:

FLOAT converts integer to floating point

IFIX integer value nearer to zero

ABS absolute value

ATAN arc tangent

COS cosine

A.5 Input/output

The contour data being used by the program is required to be read twice. It is

input to the program via FORTRAN channels 5 and 7. The output data is written to an

output file via FORTRAN channel 6.
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Appendix B

SUBROUTINE SPECIFICATIONS FOR PROGRAM MAPGRID

SUBROUTINE CHECK

Sunmlrv - This subroutine ensures that no two adjacent data points are

coincident

Subroutine statement - SUBROUTINE CHECK (F, G, IMAX, NMAX)

Input argument - NMAX dimension for arrays F and G

InputjoutpuG arguments - F x and y co-ordinates of the data points

IMAX number of data points

Subordinate subprograms - None

Lxplanation - A check is carried out with each pair of adjacent data points

to determine whether they have the same co-ordinates. If they do one of the points is

removed and IMAX is decremented by I.

SUBROUTINE IDENT

Summrarv - This subroutine modifies the format of contour data so that

it is in a suitable form for subroutine COORDS

Subroutine statemer.t - SUBROUTINE IDENT (F, G, IMAX, NMAX, ITYPE)

Input arguments - NMAX - dimension for arrays F and G

ITYPE - contour type: open contour = +1, closed contour = 0

Input/output arguments - F x and y co-ordinates of data points defining the
G ! contour

IMAX number of data points defining the contour

Subordinate subprograms - None

Explanation - See section 4.2.
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SUBROUTINE COORDS

Summary - This subroutine evaluates the co-ordinates at which y direc-

tion grid lines intersect a contour

Subroutine statement - SUBROUTINE COORDS (F, C, H, X, Y, Z, IMAX, KMAX, WF, K)

Input arguments - F ( arrays containing the x and y co-ordinates of
GG contour data points

H contour height

IMAX number of data points defining the contour

KMAX dimensions of arrays X, Y and Z

WF grid spacing

Output arguments - X arrays containing the x and y co-ordinates and the
YI height of intersection points between the grid lines
Z and the contour

Input/output arguments - K On input number of intersection points found by pre-

vious calls to the subroutine since the

initialization of K in the main program

On output number of intersection points found by pre-

vious and present calls to the subroutine

since the initialization of K in the main

program

Subordinate subprograms - Function NFIX

Subroutine INTERP

Explanation - Each pair of data points between 2 and IMAX-1 is taken in turn

and the y direction grid lines which intersect the contour between these two points are

derived. Subroutine INTERP is called to find the point of intersection of each of these

grid lines with the contour. For each point of intersection K is incremented by I and

the co-ordinates are entered into arrays X, Y and Z. It is possible that the contour is

changing direction between the two data points with the result that one or more grid

lines may cross the contour in two places (see Fig 17). In this situation, subroutine

INTERP is called to determine whether the contour cuts the first grid line beyond the

point farthest from the point at which the contour changes direction (Pi-i in Fig 17).

If it does not, the next pair of points (Pi and P i+) are considered. If it does, then

the co-ordinates of the intersection points are entered into arrays X, Y and Z and K is

suitably incremented. (If the contour just touches a grid line two points of intersec-

tion are still recorded although these points are coincident.) The next farther grid

line is now taken then the process repeated until a grid line is found that does not

cross the contour, when the next pair of points is then considered.

Only pairs of points between 2 and IMAX-I are considered because of the nature of

the interpolation algorithm used in subroutine INTERP.

A parameter EPS is defined in the subroutine, and is given as 0.01 * WF in the pro-

gram listing. Thip parameter should be chosen so that it is smaller than the digitizing

step of the digitizer used to digitize the contour data.
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FUNCTION NFIX

Summary - This function gives the integer value of a number, the value

being rounded down to the lower integer

Function statement - FUNCTION NFIX(FF)

Input argument - FF floating point number

Output function - NFIX required integer value

Subordinate subprograms - FORTRAN function IFIX

Explanation - A call is made to a computer library function IFIX which gives

the integer value of a number, the value being the nearer integer to zero. If the

input value parameter has a value which is not an exact integer, the result of IFIX has

I subtracted from it if the input parameter to IFIX is negative. The user is advised

that his compiler may have a library function equivalent to NFIX.

SUBROUTINE INTERP

Summary - This subroutine calculates the co-ordinates at which a line

X = XX intersects a contour between points (X2, Y2) and

(X3, Y3)

Subroutine statement - SUBROUTINE INTERP (XI, YI, X2, Y2, X3, Y3, X4, Y4, XX, YY,

YYS, ITEST)

Input arguments -Xl\
Y!

X2
Y2 x and y co-ordinates of the points used by the
X3 interpolation algorithm

Y3
X4
Y4

XX x value at which an interpolated y value is required

Output arguments - interpolated y valuesYYS

ITEST number of interpolated y values

Subordinate subprograms - SUBROUTINE CUBIC

Explanation - The interpolated values of y are found using the average

tangents algorithm described in section 3.3.3. The equation

3 2
x = a s + b s + c s + d

is solved by a call to subroutine CUBIC.
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SUBROUTINE CUBIC

Sumary - This subroutine finds the roots of a third order polynomial in

x in the range 0 < x < x

Subroutine statement - SUBROUTINE CUBIC (A, B, C, D, X1, X2, X3, XMAX, ITEST)

Input arguments - A coefficient of the x3  term

2
B coefficient of the x term

C coefficient of the x term

D constant term

XMAX maximum value of x for which roots are required

Output arguments - Xl first root

X2 second root

X3 third root

ITEST number of roots

Subordinate subprograms - FORTRAN functions ABS
ATAN
COS

Explanation - This subroutine gives the real roots of the equation

f(x) = ax
3 

+ bx
2 

+ cx + d = 0 . A check is first carried out to determine whether the

contribution of the x3  term is significant; the criteria adopted being that

]OOax > b . If this criterion is not satisfied, the equation is treated as a quadra-
max .

tic. For this case a check is carried out to determine whether the contribution of the

x term is significant; the criterion adopted being that lOObXmax > c . If this

criterion is not satisfied, the polynomial is reduced to a linear equation. If

100ax > b but 10 4ax2  < c the polynomial is again reduced to a linear equation.
max max

The roots of the equation for these three cases are as follows:

3 +b2 +c

(I) Cubic equation f(x) ax + bx + cx + d 0

3c b 2/a R = 9bc/a - 27d - 2b 3/a
2

9a 54a

If Q3 + R2 > 0 , then

= 2/ cos cos'( R1 3

If Q3 + R2  0

5~ ~ 2 ~ 7 7~:~ T 3 3-

and

bxI = S +T -3"-
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Having found the first root the other two can now be found.

=l X d' x x b+
a a a

)2 c
-d' if - < 0

2 =L) 2  
2

--d' if - 0

22-
x2  is real only if () - d' 0

d'
x3  = 2

(2) Quadratic equation f(x) = bx2 + cx + d =0

2 ± =- 4bd

2 2b

The roots are real only if c - 4bd , 0

(3) Linear equation f(x) = cx + d = 0

_d
xl c

Each of the roots is tested to determine whether it lies in the range

0 < x < x ITEST indicates the number of roots that satisfy this criteria. Ifmax

there is only one root it is returned by XI and if there are two they are returned by

XI and X2
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SUBROUTINE HEIGHT

Summary - This subroutine sorts the contour values into ascending order.

The first and last values are contour levels within which

interpolated values are to be restricted.

Subroutine statement - SUBROUTINE HEIGHT (H, M, IH, HMIN, MAX)

Input arguments - M number ot contours used in program +2

HM4IN minimum allowed value of map data

HMAX maximum allowed value of map data

lnput/output arguments - H On input array containing all the height values of

all the contours used in the program

On output array containing the values of all the

different contour heights plus HMIN and HMAX

IH On input number of contours used in the program

On output number of different contour heights +2

Subordinate subprograms - None

Explanation - HMIN and HMAX are entered into array H and then the values

of H are sorted into ascending order using a bubble sort (see explanation under SUB-

ROUTINE ORDER). A test is then carried out with each pair of values of H to see if

any are equal. If the two values are found to be equal, one of the values is removed

from the array and IH , denoting the values of interest in the array, is decremented

by I.

SUBROUTINE SELECT

Summary This subroutine selects data points with a given x

co-ordinate

Subroutine statement SUBROUTINE SELECT (X, Y, Z, KMAX, U, V, W, MAX, J, WW)

Input arguments - arrays containing the x, y and z co-ordinates of the

ZY intersection points between grid lines and contours

KMAX number of points of intersection

U value of x for which data points are required

MAX dimensions for arrays V and U

WW grid spacing

Output arguments V array containing y values with the x value U

W array containing z values with the x value U

J number of data points with x value U

Subordinate subprograms - None

Explanation - Each point of intersection is tested to determine whether the

x value is equal to U . If it is, J is incremented by I and the corresponding y

and z values are entered into arrays V and W respectively.
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SUBROUTINE ORDER

Summary - This subroutine orders values in an array into ascending order

Subroutine statement - SUBROUTINE ORDER (V, 1, LMAX)

Input argument - LMAX number of values to be sorted

Input/output arguments - V array of values to be sorted

W array of values associated with W

Subordinate subprograms - None

Explanation - The method used is the bubble sort. This involves taking each

pair of values of V in turn and checking to determine whether or not they are in the

correct order. If they are not they are interchanged (together with the associated

values of W ) and a counter J is incremented. If J is non-zero (indicating that at

least one pair of values has been interchanged) the process is repeated. When J is

zero all the values are in the correct order.

SUBROUTINE CHECK2

Summary - This subroutine ensures that in the situation where a grid line

just touches a contour, the two data points representing the

points of intersection of the grid line with the contour are

not coincident.

Subroutine statement - SUBROUTINE CHECK2 (Y, LMAX, WW)

Input arguments - LMAX number of data points

WW grid spacing

Input/output arguments - Y array containing y values of data points

SubordinaLe subprograms - FORTRAN function ABS

Explanation - If a grid line just touches a contour subroutine COORDS outputs

two points with the same co-ordinates, rather than one point, which will cause subsequent

interpolation algorithms to fail unless corrected. This subroutine checks each adjacent

pair of points to determine whether they have the same y values. If they do the y

values of these points, yi-I and yi , are then replaced by yi-I - E, and yi + E2

where

E = lyi J - Yi_21/5 unless E > E or yi- 2 does not exist, when E = E

E 2 = Yi+l - yiJ/5 unless E2 > E or Y,+l does not exist, when E2 = E

and E = 0.01 x WW
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SUBROUTINE AVTAN

Summary - This subroutine calculates equispaced data points along a grid

line

Subroutine statement - SUBROUTINE AVTAN (A, Y, Z, N, YY, ZZ, JDIM, H, IH, FRACTN,

IROUTE, ZE)

Input arguments - Y array containing y values of data points

Z array containing z values of data points

N number of data points

j array containing y values at which interpolated
I values of z are required

JDIM number of interpolated values required

Il used in SUBROUTINE AVTAN2 (see subroutine AVTAN2)
FRACTN

IROUTE routing parameter (see explanation)

ZE value of z for points outside the contour map

Output argument - ZZ array containing interpolated values corresponding
to YY

- A array containing the average tangent at each of the

data points

Subordinate subprograms - SUBROUTINE AVTAN2

Explanation - The average tangents at each of the data points (yi, zi) are

first calculated. For each value of y at which interpolated values of z are

required (yy) the data points are found which satisfy the criterion Yi< y y ' Yi+l "

A call is then made to subroutine AVTAN2 to obtain the interpolated value of z at yy

If the value of yy lies outside the range of the data points then one of two alterna-

tives is taken depending upon the value of the routing parameter IROUTE.

IROUTE I l The interpolated value is set to the value of z corresponding to

the y value closest to yy .

IROUTE = I The interpolated value is set to ZE , a value specified by the user

in the main program.

It should be noted that in arrays YY and Y the values must be arranged in

ascending order and no two values of Y must be the same. The latter condition is

ensured by a call to subroutine CHECK2 prior to the call to this subroutine.
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SUBROUTINE AVTAN2

Surmar _ - This subroutine performs average tangents interpolation

between two data points

Subroutine statement - SUBROUTINE AVTAN2 (YI, Y2, ZI, Z2, Al, A2, YY, ZZ, H, IH,

FRACTN)

Input arguments - YI y a values and average tangent at the first
Z, ~ data point

A!

Z2 y and z values and average tangent at the second
Z2 data point
A2

yy y value at which an interpolated z value is

required

array containing the values of all the different
H contour heights plus minimum and maximum allowed

values of map data

IH number of values in H

FRACTN set in main program, normally to 0.99

Output argument - ZZ interpolated z value

Subordinate subprograms - None

Explanation - The interpolated value of z is found using the average

tangents algorithm described in section 3.3.1. The algorithm has been modified (see

section 3.3.2) so that at turning points the interpolated value is not allowed to

reach the next contour level and in other circumstances is constrained to remain

between ZJ and Z2



Ki

3C Appendix B

SUBROUTINE WEIGHT

Summary - This subroutine generates weighting values associated with the

interpolated data points along a grid line

Subroutine statement - SUBROUTINE WEIGHT (Y, YY, W, N, JDIM, Z, A)

Input arguments - Y array containing y values of data points

YY array containing y values of interpolated data points

N number of data points

JDIM number of interpolated data points

Z array containing z values of data points

A array containing the average tangents 
at each of the

A data points

Output argument - W array containing weighting values

Subordinate subprograms - None

Explanation - for each interpolated point (yy) data points are found which

satisfy the criterion yi < yy 4 yil" The weighting value associated with yy is

given by:

W = yi+
I -yil

il 1

If Yl 
= 

yy W = Y2 Yll

If A i = A = 0 and Z. = Zi+ I  W = -1

If yy lies outside the range of y W = 0

It should be noted that the weighting value is not important when YY = y, or yi+,

K'
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Appendix C

LISTING OF PROGRAM MAPGRID

C PROGRAM HAPGRID ** PAGE 9811

C *..PROGRAM HAPGRID so***
C
C
C
C THIS PROGRAM CONVERTS CONVERTS A CONTOUR MAP INTO A UNIFORMLY SPACED GRID

C OF POINTS
C
C CONTOUR FITTING ALGORITHMi AVERAGE TANGENTS
C
C .. *e*
C

DIMENSION F(58),G(51),X(lmlB),Y(lIhI),Z( lIUI),A(591,(5l)
DIMENSION U(59),Y(59),T(59L'UT( 59), U(51)..(5U)
DIMENSION AA(59,59), WA(59.S9)

C
C INITIALIZATION OF PARAMETERS
C

MA~eS S
KMAX=IUII
1D1M=59
JDIM-59
IROUTEst
ZEwfl.
WYMI. U
XSTu-29. 9
YSTs-29. 9
HMIN. .
HMAX-25I .8
FRACTN=0.9
DO 19 I-1,IDIM

Il U(I)oFLOAT(1-1)*MV
DO 20 J.1,JDIM

21 V(J).FLOAT(J-1)'bUU
C
C GENERATE GRID IN F DIRECTION
C

fl-1
KRECmB

211 MmM+l
READ (5..51,EHDu23U) H(M),IMAXITYPE
DO 220 Im1,IMAX
READ (5.52) F(I ),G(I)
F( I )uF( I )-XST

221 C(I)-G(I)-YST
NMAXnIMAX
CALL CHECK (FoGoIMAXMMAX)
NMAKU IMAX42
CALL IDENT (F,GIMAX..NMAX.ITYPE)
CALL COORDS (F,G,H(M),XY,Z,IMAX.KMAX.WW,KREC)
GO TO 219

231 HuM.1
CALL HEIGHT (HNM,IH.NMJlN,NMAX)
DO 249 I.1,IDIM
CALL SELECT (X,YZ,KREC,U(I),S,U,MAX,LMAXUU)
IF ( LMAX LT .I) GO TO 268
CALL ORDER (9,W,LMAX)
CALL CHECK2 (8,LMAX..WW)
CALL AYTAN (AS,W.LMAX,V, T,JDIM,H,IH,FRACTNIROUTE,ZE)
CALL WEIGHT (S. .WT. LMAX. JDIM.W,A)
GO TO 259
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C *so** PROGRAM MAPGRID *0000 PAGE 1112

261 DO 271 J-I.JDIM
UT( J)a-2.I

271 T(J)=ZE
255 DO 241 Jnl,JDIN

AAM 1, J )=T( J )
243 WA(1. J )wWT( J

C
C GENERATE GRID IN G DIRECTION
C

K RE CE*
311 READ (7,51,ENDu33U) NH.INAX,ITYPE

DO 321 I.lIMAX
READ (7.52) FCI)1 G(I)
F( I )F( I)-NST

321 G(I)uGCI)-YST
NNAXEINAX
CALL CHECK CF.G,INAXoNNAX)
NNAX. I AX+2
CALL IDENT (G.F,ItIAX,NNAX.ITYPE)
CALL COORDI (GF,HH,XYZ.INAX,KNAX,UV,KREC)
GO TO 311

331 VRITE (6.53) 1OIM.JDIN
DO 341 Jnl#JDIN
CALL SELECT CX. Y.Z.KRECV(J),S,.PMAXLMAX.WU)
IF CLNAX.LT.l) GO TO 361
CALL ORDER (S.U,LMAX)
CALL CHECK2 (S,LMAXUUW)
CALL AYTAN (A..S,U,LNAX,U, TIDIH, III.FRACTN.IROUTE. U)
CALL UEICNT (S,UMT.LMAX.IDIMU.A)
GO TO 351

361 DO 3?1 I.1.IDIM
VTC )-2 .1

371 T(I)uZE
355 DO 343 Iw1.IDIN

IF (WA(I.J).EQ..MT( I)) AA( IJ)a(AA(I.J)sT( I))/2.I
IF (UA(I,J).EQ.VT(I)) GO TO 341
IF (IROUTE.NE.1) GO TO 345
IF (WA(I,J).EO.-2.l) GO TO 341
IF CWT(I).EO.-2.I) AA(I.J)*T(I)
IF CVT(I).EG.-2.I) GO TO 341
IF (WA(I,J).Eg.I.I) GO TO 343
IF C VT(I). EQ.lII) AA( I.J )T( I)
IF (UT(I).Eg.I.I) GO TO 343
IF (MTCI).GT.UA(IJ)) AA( Ia )=T(I )
GO TO 341

345 IF (VACI,J).EO.-1.I.AND.UT(I).LE.I.I) GO TO 343
IF CVT(I).EQ.-1.I.AND.UACI,J).LE.U.I) GO TO 346
IF (UT(I ).GT.UA( I,J)) AA( I,J )nT(l )
GO TO 343

346 AA(I.J)-TCI)
343 CONTINUE

C
C OUTPUT FINAL GRID
C

DO 411 JoI,JDIM
433 UNITE (6o54) CAA(I.JDIM+1-J),IalIDIN)

C
C INPUT/OUTPUT FORMATS
C

51 FORMAT (F6.1.,512)
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C *... PROGRAM NAPGRID ***** PAGE 1113

52 FORMAT (2F8.3)
53 FORMAT (13,1XI3)
54 FORMAT (12F6. 1)

C
STOP
END
SUBROUTINE CHECK (F,G,IMAXNMAX)

C
C THIS SUBROUTINE ENSURES THAT NO TWO ADJACENT DATA POINTS ARE COINCIDENT

C
DIMENSION F(NMAX),G(NMAX)
1-1

Isl Iml+!

IF (I.GT.INAX) RETURN
IF (F(I).NE.F(I-I)) GO TO 1l
IF (G(I).NE.G(I-I)) GO TO l

DO 23 J=I,IMAX
F(J-I ),F(J)

23 G(J-I)=G(J)
IMAXmIMAX-I
Jul-I

GO TO I
END
SUBROUTINE IDENT (F,G,IMAXNMAX,ITYPE)

C
C THIS SUBROUTINE MODIFIES THE INPUT DATA FOR SUBROUTINE COORDS DEPENDING
C UPON THE CONTOUR IDENTIFICATION GIVEN BY ITYPE
C ITYPE=+I OPEN CONTOUR
C ITYPEn 8 CLOSED CONTOUR
C ITYPEU-1 UNDEFINED
C

DIMENSION F(NMAX),G(NMAX)
IF (ITYPE) 13,2B,38

18 RETURN
29 F(IMAX+I)"F(2)

G(IMAX ! )-G(2)
F( IMAX+2 )-F(3 )
G( IMAX*2 )uG(3)
IMAX IMAX 2
RETURN

31 F(IINAX+I)"2.I*F(IMAX)-F(IMAX-1)
G( IMAX4I )"2 .I*G( IMAX )-G( IMAX-I)
IMAX"IMAX42
DO 4B Iw2,IMAX
F(IMAX42-I)"F(IMAX+I-I)

43 G(INAX+2-1)"G(IMAX+I-I)
F( 1 )=2.U'F( 2)-F(3)
G( )u2. BOG( 2)-G( 3)
RETURN
END
SUBROUTINE COORDS (F,G,N,XY,Z, IMAX,KMAXUF,K)

C
C THIS SUBROUTINE EVALUATES THE CO-ORDINATES AT WHICH THE GRID LINES
C INTERSECT A CONTOUR. AVERAGE TANGENTS INTERPOLATION IS EMPLOYED.
C

DIMENSION F(IMAX),G(IMAX),X(KNAX),Y(KIAX),Z(KMAX)
EPS=ABS( B. BI*WF)

- 1-3

IFIwNFIX(F( I-1 )/WF)
IF (ABS(FLOAT(IFI)*IF-F(I-1)).GT.EPS) GO TO 5



Appendix C

PAGE 1114
C *..PROGRAM HAPGRID*e*

KmK.1
X ).F( I)
Y(K )uG(I)
Z(K )UN
S .1
Iw1-1.
IF (I.GT.IMAX-1) RETURN
IFIsNVIX(V( 1-I)/WF)
IF2oNVIK(F( 1)/WF)
F V-CF( 1.1)-F( I) (( I-i)-F( I-2))
IF (FF.LT.3.I) GO TO 5I
NV. IF 2-IFl
IF (NF) 48,5161

61 00 23 NmI.NF
KUK*1
X(K )sLOAT( IFI )*WFeVLOAT(HN)OWV
IF (ASS(X(K)-V(l)).GT.EPS) GO TO 18
Y(K )G( 1)
GO TO 23

13 CALL INTERP(F(I-2),G(I-2),F(I-1)..G(I-1),F(I),G(l),F(I,1)
0,G(141)#X(K),Y(K),YYS*ITEST)

21 Z(IC)uN
GO TO SI

43 NFw-NV
IF (A3S(FLOAT(1V2)*MF-F(I)).LT.EPS) NFsNF+1
DO 33 N=I.NF
XXuFLOAT(IFl)OUF-VLOAT( N-i ).WV
IF (ADS(XX-F( I-I )).LT.EPS) GO TO 33
KoKo!
)((K )XX
IF (ABSSX(K)-F(I)).GT.EPS) CO TO ?3
Y(K )C( I)
Z(K ).H
GO TO 33

?3 CALL INTERP(F( I-2)G( I-2),F( I-I ).C( 1+1)F(I ).G(I ),F(I.I )
#.CU1,1,X(K),Y(K),YYS,ITEST)

Z(K )w"
35 CONTINUE

GO TO 9I
50 XXoFLOAT(IFI)*VF

IF (ABS(XY-F(I)).GT.EPS) GO TO 55
KsK.1
X(K)uV(I )
Y(K )G( I)
Z(K )N

55 IF (FF.GE 8 8) GO TO 6
Mae
ISIGNaI
IF ((F(I+1).F(I-2))-(F(I)+F(I-1))) i888,9

9U ISIGN=-
Hal
IF (1V2.CT.IFI) IFIm1F2
GO TO Ill

108 IF (IF2.LT.IFI) IF1.1F2
110 NuH.1*ISIGN

XXoFLOAT( IFI*N)*WF
CALL INTERP(F(I-2),G( I-2),F(1-1 ).C( I-1) F( I).G( I),F(1.1 )

0G141). XX, YYI,YY2,ITEST)
IF (ITEST EQ.8) GO TO 81
K -K+I
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PACE 1115

C ... PROGRAM MAPCRID o.*..

X(K )-XX
Y(K )uYYI
Z( K)WH
IF (ITEST.Eg.1) GO TO 118
KmK+I
X(K )wXX
Y(K )=YY2
Z(K ).n
GO TO III
END
FUNCTION NFIX(FF)

C
C THIS FUNCTION GIVES THE INTEGER VALUE OF A NUMBER, THE VALUE BEING
C ROUNDED DOWN TO THE LOVER INTEGER.
C

NFIXmIFIX(FF)
IF (FLOAT(NFIX) EQ.FF) RETURN
IF (FF.LT.U.I) NFIXwNFIX-1
RETURN
END
SUBROUTINE INTERP (XI.YI,X2,y2,X3.Y3,X4,Y4,XXYY,YYS,ITEST)

C
C THIS SUBROUTINE CALCULATES THE CO-ORDINATES AT WHICH A LINE X.XX
C INTERSECTS A CONTOUR BETWEEN POINTS (XZ..Y2) AND (X3,Y3)
C

Dl.((X2-Xl)*.2+(Y2-Yl)**2)00U 5
D2a( ( 3-X2 )P.2+( Y3-Y2 )**2 )**I 5
D3u((X4-X3)..*2+(Y4-Y3)002)008 5
AXlu((X2-Xl)/DI+(X3-X2)/D2)/2.1
AX2u((X3-X2 )/D2+(X4-X3)/D3)/2.8
AYI=((Y2-Yl)/Dl+(Y3-Y2)/D2)/2 I
AY2u( (Y3-Y2 )/D2+( Y4-Y3 )/D3 )/2.U
DXnX3-X2
DYuY3-Y2
AX=(AXI*D2*AX2bD2-2. U*DX)/D24.3
BX.(3 **DX-AX2oD2-2. UeAX1*D2 )/D2**2
CX=AXl
AYo(AYI.D2+AY2*D2-2. I*DY)/D2**3
BY=(3.0*DY-AY2*D2-2 I*AYI*02)/D2**2
C Y.AY I
DXsX2-XX
CALL CUBIC (AXe BX,CXDXDSI.DS2,DS3. D2,ITEST)
IF (ITEST.EQ.0) RETURN
YAYeDS I.43BY4DS 142.CY*DS 1.Y2
IF (ITEST E9.1) RETURN
YYSuAY.D52.*3.BY.DS2442+CY*DS2.Y2
I TEST=2
RETURN
END
SUBROUTINE CUBIC (AB.C.D.XI.X2.X3.XMAX.ITEST)

C
C THIS SUBROUTIN4E FINDS THE ROOTS OF A THIRD ORDER POLYNOMIAL IN THE
C RANGE QI ULT.X LT XMAX
C

IF (ABS(A*XMAXIII U).LT ABS(B)) GO TO 31
IF (ABSCA*XMAX*24IEII U) LT ABS(C)) GO TO 31

C
C SOLVE THIRD ORDER POLYNOMIAL
C

Qs( 3 U*C-( B..?)/P~)/(9.leA)
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C ***so PROGRAM MAPGRID

R-(9 9eB.CIA-2?.I.D-2.B.B..3eA**2)/(54.I.A)
IF (G**3+Rso2.Lr.6.1) GO To 5
S=R.( Q**3,R..2).SU.5
SIGN-I .8
IF (S.LT..) SIGN-l.0
S-S IGH*( ASS(S ))s*(1.3/3.9)
T=R-( Q..3+R*o2)e*E.5
SIGN-i.E
IF (T.LT.I.I) SIGN--8
T=SIGM*(AIS(T))#e( 1.3/3.1)
Xi=S.T-9/( 3.9A)
GO TO 11

5 DUM-ATAN((ABS(-Q**3/R**2-I.I))**3.5)
IF (R.LT.B.I) DUMa3. 141592654-DUN
X1u2.I*(-Q)**I.5*COS(DUN/3.U)-9/(3 leA)

18 ITESTwI
9BwXI .9/A
CCoXts(Xl+B/A ).C/R
TEST-(B9/2.*)**2-CC
IF (TEST.LT.I.I) GO TO 25
IF (-99e'2.I.LT.I I) GO TO 15
X3m-9/2.TEST**I.5
GO TO 23

15 X3-089/2 U-TEST00I.5
21 X2mCC/X3

I TEST-3
25 GO TO 45

C
C SOLYE SECOND ORDER POLYNOMIAL
C

30 IF (ADS(I.XMAXs1lU U).LT.A9S(C)) GO TO 41
TESTwC*e2-4 UCICD
IF (TEST.CE. I ) GO TO 35
I TEST-I
RETURN

35 Xlm(-C-TESTosU 5)/(2.ESI)
X2-(-C.TESTooE. S)/(2.USB)
I TEST-?
CO TO 45

C
C SOLYIE FIRST ORDER POLYNOMIAL
C

41 Xlw-D/C
ITEST-I

C
C WHICH ROOTS LIE IN THE RANGE I.E LT.X.LT.XMAX
C

45 IF (XI GT. I.AND.XlIT K.NAX) GO TO 65
ITESTwITEST-1
IF (ITEST-1) 5135,68

5I RETURN
55 XImX2

GO TO 45
68 X1mX2

X 2 X 3
GO TO 45

65 IF (ITESTEQI) RETURN
?1 IF (X? 67.3 I AND.X2-LT XNAX) GO TO ?5

I TESTwITEST-1
IF (ITEST-ES. 1) RETURN
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C 00*00 PROGRAM APGRID *000. PAGE 8817

X2wX3

GO TO 71
75 IF (ITESTIEQ.2) RETURN

IF (X3.GT.I.I.AND.X3.LT.XMAX) RETURN
ITESTuITEST-1
RETURN
END
SUBROUTINE HEIGHT (HIq IHHMIN,HMAX)

C
C THIS SUBROUTINE SORTS THE CONTOUR VALUES INTO ASCENDING ORDER. THE FIRST
C AND LAST VALUES ARE CONTOUR LEVELS WITHIN WHICH INTERPOLATED VALUES ARE
C TO BE RESTRICTED
C

DIMENSION H(M)
H(-I )GNMIN
4( M )u HMAX
LMANM-1

21 Jul
DO 11 Iw1,LMAX
IF (NC( I1).GE.H(I)) GO TO i

DUMH( I.I)
N(I+1 )wN(I )
H( I )uDUM

i CONTINUE
IF (J.MNE.8) GO TO 23

41 ImI+1
35 IF (I.GT.LMAX) GO TO 33

IF (H(*1).NE.H(I)) GO TO 41
DO 58 J.I,LMAX

5 H(J).(J I)
LMAXwLMAX- 1
GO TO 35

33 IHuLMAX1
RETURN
END
SUBROUTINE SELECT (X,Y,Z,KMAX,U,V,WMAXJ,WU)

C
C THIS SUBROUTINE SELECTS DATAPOINTS WITH A GIVEN X CO-ORDINATE
C

DIMENSION X(KMAX),Y(KNAX),Z(KMAX),V(MAX),U(MAX)

lag
Jul
EPSaABS(.I*VW)

IF (I GT.KMAX) GO TO 23
IF (AB9S(X(I)-U).GT.EPS) GO TO I
JwJ*
V(J )uY( I)
W(J )AZ( I)
GO TO 13

23 RETURN
END
SUBROUTINE ORDER (VW,LMAX)

C

C THIS SUBROUTINE ORDERS THE VALUES OF V INTO ASCENDING ORDER
C

DIMENSION V(LMAN),W(LMAX)
IF (LMAX EQ.I) RETURN
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C *S*PROGRAM HAPGRID*e.

LLNAX=LNAX- 1

DO 19 I-1..LLMAX
IF CVCI.1).GE.V(I)) GO TO 18

EUluV( 3.1)

VC I )uUN
DUNuM( [.1)
W( 1.1)OU( I)
U( I)NDUM

11 CONTINUE
IF CJ.NE.I) GO TO 21
RETURN
E ND
SUBROUTINE CHECK2 (YaLNAKMM)

C
C THIS SUBROUTINE ENSURES THAT IN THE SITUATION WHERE A GRID LINE JUST
C TOUCHES A CONTOUR THE TWO DATA POINTS REPRESENTING THE POINTS OF
C INTERSECTION OF THE GRID LIME WITH THE CONTOUR ARE NOT COINCIDENT
C

DIMENSION Y(LNAX)
IF (LNAX.LT.2) RETURN
EPSsUI heWW

13 101+1
IF (ICGTINAX) RETURN
IF (YCI).NE.YCI-1)) GO TO 11
IF (I.GT.2) YLoY(I-2)
IF (I.LT.LNAX) YNoYCI*1)
IF (I.EI.2) YLuY(I-1)-5.I.EPS
IF (I.EGLNAX) Y~oY(I).5.1*EPS

IF (SS.GT.EPI) $SwEPS
YI-I )=((YL-YC I-1) )/AIUCYL-Y( I-1) )*SS).Y( I-1)

$SwAUS(YN-Y(I ))15.l
IF (SS.GT.EPS) 55-EPS

GO TO 15
E ND
SUBROUTINE OYTAN (A.YZN,YYZZ,JDIN,NIH,FRACTN,IROUTE,ZE)

C
C THIS SUBROUTINE CALCULATES EQUISPACED DATA POINTS ALONG A GRID LINE
C

DIMENSION A(N),YY(JDIN),ZZ(JDIN),Y(N),Z(N),N( IN)

E2-Z( N)
IF (IROUTE.Nfl) GO TO 5

5 IF CH-E6.) GO 70 ?1

If (MhZ9.) 00 TO 1S
INTwN-1
00 1U Iw2.INT

Is (2 as )Z )/Y(I1)YI)
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C '. PROGRAM MAPGRID 
PAGE0*0

2B JaJ~l
IF (J.CT JDIM) RETURN
IF (YY(J)-Y(I)) 25,30,3B

25 ZZ(J)-El
GO TO 26

35 JuJ~l
Ir (J.GT.JDIM) RETURN

3B IF (YY(J)-Y(I)) 28,4B,45
4B ZZ(J).Z(I)

GO TO 35
45 IF (YY(J)-Y(I.I)) 55,61,65
65 10I+1

IF (I+l.GT.N) GO TO 51
GO TO 38

68 ZZ(J)uZ(I+l)
GO TO 35

55 CALL AVTAH2 ( Y(I), Y( 1+1),Z( I ),Z( 1.1 )A(lI),A( 1.1 )YY(J ), ZZ(J )
*.NH JN.FRACTN)
GO TO 35

?B Jul
50 DO 75 LuJ,JDIM
75 ZZ(L)uE2

RET UR N
E ND
SUBROUTINE AVTAH2 (Y1,Y2,Zl.Z2,AlA2,YY,ZZH, IHFRACTH)

C
C THIS SUBROUTINE IS THE AVERAGE TANGENTS ALGORITHM FOR CONTOUR CUT DATA.
C IT ENSURES THAT INTERPOLATED VALUES REMAIN WITHIN THE CONTOUR INTERVAL
C UNDER CONSIDERATION OR FOR TURNING POINTS DOES NOT DEVIATE FROM THE
C INITIAL CONTOUR DATA BY MORE THAN ONE CONTOUR INTERVAL
C

DIMENSION N(IH)
DUN lwA
DUM2aA2
DUM3wZ1
DUM4sZ2
DUM5=YY
IF (Z2.GE.ZI) GO TO 5
DUM-Z I
Z1lZ2
Z2UDUM
DUMUA 1
Alu-A2
A2w-DUM
YYY2'YI -YY

5 DY=Y2-YI
DZwZ2-ZI
Au(AI*DY.A2*DY-2 .B*DZ )/( DY**3)
Bu( 3. I.DZ-2 .UOAl*DY-A2*DY )/( DY.*2)
C=Al
Y.YY-Y1
ZZ=A*Y**3+BeY*02+C*Y+ZI
IF (22.NE.Zi) GO TO IB
IF (A2.EQ.Al) CO TO 7B

IB ITEST-I
TEST=B**2-30**C
IF (ABS(A*DY*15I U).GT ABS(B)) GO To 15
YSI u-C/( 2.B3.9)
IF (YSI.LT.E BOR.YSI.GT DY) GO TO 70
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C .* PROGRAM HAPGRID PAGE081

I TEST-I
GO TO 35

15 IF (TEST) ?B,28,25
21 YSIm--/(3.EOA)

IF (YSI.LT.B.l.OR.YS1 CT.DY) GO TO 79
ITEST-1
GO TO 35

25 YSI-(-B-TEST**8.5'/(3.P*A)
IF (YSl.LT.B.I.OR.YS1.GT.DY) GO TO 30
I TEST. 1

39 YS2=(-9+TEST**E-5)/(3.fl*A)
IF (YS2.LT.B.B.OR.YS2.GT.DY) GO TO 35
IF (ITESTEQI) YSI-YS2
I TEST. ITEST+1
IF (ITEST.NE.2) GO TO 35
IF (YSI.LT.YS2) GO TO 36

YS1 -YS2
vS2=-0UN

36 IF (Al.HE.I.P) GO TO 37
YSI-YS2
I TEST. 1
IF (A2.NE.I.U) GO TO 35
I TEST-I
GO TO 35

3? IF ,A2.14F,2.9) GO To '35
I TEST-i

35 IF (ITEST.Eg.I) GO TO 79
IF (ITEST.EO.2) GO TO 55
I SIGN-l
IF (Ai-A2.LT.U.0) ISIGN--I
D0 49 I-1.IN

49 IF (Z1.EQ.H(I)) GO TO 45
45 IF (ISIGNEQI) 11.1l

CONT'HlI)-H(I-l )
ZT-A*YSla'3.9aYSI**2.CeYSI
IF (ABS(ZT).LT.COHT) GO TO 79
DZ-FLOAT( ISIGN)*FRACTHSCONT
IF (Y.CT.YSI) GO TO 50
A-(A1*YSI-2.I*DZ)/YSI**3

ZZ-A*Y*03+8*Y*02+C*Y+Zl
IF (A8S(ZZ-ZI )CT.ABS(DZ)) ZZ-Z1,DZ
GO TO 78

59 DYuDY-YSl
Y-Y-YS 1
A-( A2*DY.2.O*Z )/DY*03
9-( -3.DZ-A2*DY )#DY*02
2ZZA*Ye03,BOYO*2+Z1+DZ
IF (A9S(ZZ-ZI ),GT.ABS(DZ)) ZZmZI+DZ
GO TO 79

55 ZTI-A*YS1..3.S.YSI**2+C'YSI.ZI
ZT2=A*YS2..3.B*YS2**2+C*YS2.ZI
IF (ZTl.LT .Z2.AND.ZT2,GT.ZI) GO TO 78
IF (Y.GT YSI) GO TO 69
IF (ZTI.LT.Z2) GO TO 79
DZwFRACTN*(Z2-ZI )
A-( Al e'SI-2 .I'OZ )/YS1*03
Bm(3 9.DZ-2.I*Al*YSI)/'YS1**2
Z Z.A. Y 3+9 .Y*e2 ,A *Y 4ZI
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c .. PROGRAM MAPGRID '*

IF (22 GT.Z1+DZ) ZZ=Z1+DZ
GO TO ?U

60 IF (Y.GT.YS2) GO TO 65
IF (ZTI.GE.Z2) ZT1=ZI+FRACTN*(22-ZI)
IF (ZT2.LE.21) ZT2-Z2-FRAiCTN*( 22-ZI )
0ZaZT2-ZTI
DY=*-'S 2- YSI
YXY-YS 1
Am-2. B.DZ/DYO*3
8-3 .9*DZ/DY**2
ZZAA.Y**3+B*Y**24ZTI
IF (ZZ.GT.ZTI) ZZ-ZTl
IF (ZZ.LT.ZT2) ZZ-ZT2
GO TO 70

65 IF (ZT2.GT.Z1) GO TO 71
DZ=FRACTN*(Z2-Z1 )
DY=DY-YS2
Y-Y-YS2
A-C A2*DY-2.I*DZ )/DY**3
BuC 3.0IDZ-A2.DY )/DY**2
ZZQA*Y**3+B*Y**2+Z2-DZ
IF (ZZ.LT.Z2-OZ) ZZ=Z2-DZ

79 Al-DUMI

2 1-DUM3
2-DUN 4
V V -DU M5
RE TURN
END
SUBROUTINE iViIGNT (Y, YYW, N, JIM,.Z, A)

C
C THIS SUBROUTINE GENERATES WEIGHTING VALUES ASSOCIATED WITH THE
C INTERPOLATED DATA POINTS ALONG A GRID LINE
C

DIMENSION YY(JDIM),W( JDIII),Y(N ),Z(NLA(H)
Jol
IF (M-EG 1) GO TO 71

J-6

II J=J+I
IF (J.GT JDIN) RETURN
IF (YY(J)-Y(I)) 28,3B,30

20 W(J)-BI
GO TO 1I

49 J=J+1
IF (J.GT.JDIN) RETURN

30 IF (YY(J)-Y(I.I)) 5B.,5966

IF (I+l.GT.N) GO TO 7l
GO TO 38

50 W(J)wABS(1 8/(Y(1+l)-Y(I)))

GO TO 49
79 DO 83 L=JJDIM
89 W(L)aE U

RETURN
END
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LINEAR INTERPOLATION VERSION OF SUBROUTINE COORDS

PAGE 800,

SUBROUTINE COORDS (FC.N..X,Y.ZIMAX.KMAXUF,KIEXIT)
C
C THIS SUBROUTINE EVALUATES THE CO-ORDINATES AT WHICH THE GRID LINES
C INTERSECT A CONTOUR. LINEAR INTERPOLATION IS EMPLOYED.
C

DIMENSION F(INAXG( IMAX),X(KMAX)oY(KHIAX),Z((MAX)
EPSuABS(E. E1*UF)
Im3
IF1=NFIX(F( 1-1)/UF)
IF (ABS(FLOAT(IFI)*VF-F(1-1)).CT.EPS) GO TO!5
K=K.1
X(K)=F(I )
Y(K)zG(I )
Z(K )mH

5 Im--
so 1=141

IF (I.GT.INAX-1) RETURN
I FI=NFIX(F( 1-1 )/WF)
IF2=NFIX(F( I)/WF )
FF=(F( 1+1 )-F( I) )*( F( I )-F( I-1)
HF. 1F2-IFI
IF (HF) 40,58,68

69 DO 20 N-1.NF
KwK+1
X(K)=FLOAT( IFI)*WF+FLOAT(N)*UF
IF (ASS(X(K)-F(l)).GT.EPS) Go TO 1l
Y(K )=G( I)
Z(K )nH
IF (FF) 11,88,9

10H Y(K )-( (X( K)-F( I-1) )*( 0(1)-G( I-I) )/( F( I)-F( 1-1)) )+G( I-i 3

29 Z(K)=N
GO TO 68

49 NF=-NF
IF (A9S(FLOAT(1F2)*WF-F(l)).LT.EPS) HF=NF+I
DO 39 N.INF
XX&FLOAT( IFI )eVF-FLOAT( N-I )sWF
IF (ABS(XX-F(I-I)).LT.EPS) GO TO 30
K=K+1
X(K )=XX
IF (ASS(X(K)-F(I)).CT.EPS) Go TO 78
Y(K)=G(I )
Z(K )=H
IF (FF) 111881,81

30 Z(K)uN
GO TO 91

58 XX=FLOAT(IFI).WF
IF (A9S(XX-F(l)).GT.EPS) GO TO S1
KnK.1
IF (K.GT.CMAX) GO TO 121
X(K)=F(I )
Y(K )aG(I)
Z(K )wN
IF (FF ) 118,8081

III KmK*l
X(K)nX(K-1 )
Y(K )sY(K-I )
Z(K ).Z(K-I)
GO TO 81
E ND
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PROGRAMS TO CHECK OPERATION OF PROGRAM MAPGRID

El

C
C 00000 PROGRAM DRIVERI 00000
C
C THIS PROCRAM PRODUCES CONTOURS OF a 2-0 GAUSSIAN, CENTRE (I,@)
C

DIMENSION X(13).Y( 13)
I TYPE-U
INC-12
P1.3. 141592694
14IAX.241 .6
HP9W. 16 I
CONT-MG
CONST-ALOG( 2. U)/UPBW**2
0O to J-1,9
F.CONT*FLOATC 1U-J)
R.( (ALO0CC MANI'F ))/CONST )**I.
DTMETA. *PI'PFLOAT(IMC)
DO 23 I.IINC
TNETA.DTHETAOFLOAT( I-I)
MCI ).ROCOSCTHP-TA)

23 Y(I ).ReSIN( THETA)
I MUM. INC. I
X( INUM )-A( I)
Y( INUM )Y(1 I
WRITE (6,61) FINUMITYPE

61 FORMAT (F6.1.15,12)
WRITE (6,62) (X(I),Y(I),I.1.INUM)

62 FORMAT C2FS.3)
IN CONTINUE

STOP
END

E2

C
C 00000 PROGRAM DRIVER2 se0e0
C
C THIS PROGRAM EVALUATES A 2-0 GAUSSIAN OVER A 19.99 GRID
C

DIMENSION 2(59)
P1.3. 141592654
HMAX.248.0
HPSU. 16.1
CONST-ALOG( 2. I)/MP8W..2
IDIM.59
JDIM-59
WiRITE (6,61) IDIM,JDIM

61 FORMAT (13,IX,13)
DO IS J1.,JDIMq
Y.-29 .IFLOAT(J-1)
DO 23 I-I,IDIM

X I29§FLOAT( 1)
RR*e2.Ye.2
2(1 ).241 U.'EXP( CONSTCR)

20 IF (2(I) 1.1.25,N) Z(I).25.I
IN WRITE (S661) (Z( I).Iol,39)
61 FORMAT (1?F6.1)

STOP
END
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Appendix F

PROGRAM EXPAND

F.) Function

To expand (or contract) the number of points in a grid in either or both the x

and y directions.

F.2 Dimensions of arrays

A number of points in a row or column, whichever is greatest (IDIM)
Z

Z Z number of points in a column after expansion (JJDIM)

AA IDIM, JJDIM.

F.3 Program units

Subroutine AVTAN Calculates equispaced data points along a grid line. (This

subroutine is very similar to that described in Appendix B. The main difference is that

interpolated values outside the dataset are only set to the value of the nearest point in

the dataset, no other option being available.)

Subroutine AVTAN2 : Average tangents algorithm for uniformly spaced data.

In addition the following FORTRAN functions are called:

IFIX integer value nearer to zero

FLOAT converts integer to floating point.

F.4 Input/output

Input via FORTRAN channel I expansion factors for x and y directions

Input via FORTRAN channel 5 the input grid (formatted as output by MAPGRID)

Output via FORTRAN channel 6 : expanded grid (format similar to that of input

gridS.

F.5 Listing of program EXPAND



Appendix F

C FACE Bmi

C
C 0.... PROGRAM EMPANO e0g..

C THIS PROGRAM EXPANDS OR CONTRACTS THE NUMBER OF POINTS IN A GRID
C

COMMON X(257),XX(1355).A(25?),Z25?),ZZ(IISS),AA(257.I355)
COMMON AT(257,257)
READ ( 1,11) XM.YM

11 FORMAT (2F9.3)
READ (5.51) IDIM.JDIM

51 FORMAT (13,IX,13)
DO to J.I,JDIM

11 READ (5.52) (AT(IJ),1I.10OI)
52 FORMAT (12F6.1)

IPTS9.IFIX( XM*FL OAT( ID IM-I))#
JPT S.IFIX( Y MeFL OAT( JO IN-I))o
WRITE (6,61) IPTS.JPTS

fit FORMAT (14.IX,14)
SCALE-FLOAT(JDIM-I )/FLOATCJPT3-I)
DO 21 J.I,JPTS

21 XX(J).FLOAT(J-1)*SCALE
DO 38 J.1.JDlM

33 X(J).FLOAT(J-1)
00 43 1.1 10KM
Do 53 J.I.JDIM

51 Z(J).AT(I.J)
CALL AYAN (A.K. Z,J*IM.XH.ZZ.jPTS)
DO 41 J-I,JPTS

45 AA(IJ).ZZ(J)
BCALE.FLOAT( lOIN-I )oFLOATC IPTS-1)
DO 63 1.1 IPTS

63 XX(I).FLOAT(I-I)OSCALE
DO 73 1-1,10KM

7N X(I).FLOAT( I-1)
DO 98 J-I,JPTS
DO 93 I.1.J01M

93 2(1 )-AA(I1.j )
CALL AVTAN (A.N.Z. OIN, XX. ZZ.1P13)

90 WRITE (6,52) (ZZ(I).IPTS)
STOP
END
SUBROUTINE AYTAN (A,YZ.NYY.2Z.JOIN)

C
C THIS SUBROUTINE CALCULATES EQUISPACED DATA POINTS ALONG A GRID LINE
C

DIMENSION A(N), YY( JOIM).ZZ(JDIM),Y(N I. (M)
EI.Z( I
E2.ZC N)
IF (N EQ 1) GO TO 71
A( I )( 2( 2)-2( 1 )/(Y( 2)-Y( I)
A(N ).( Z( N)-Z(N-1) )/( Y(N )-Y( N-1)
IF (N LT,3) GO TO 15
INT-N-I
DO0I 18I2. INT

A2.(2(14l)-Z(I)).'(Y(141)-Y(l))
IN AU )-(Al+A2)/2.I
15 J-8

I-1
28 J-J.I
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c PACE 1112

IF (J.CT JOIN) RETURN
IF (YY(J)-Y(I)) 25,38,31

25 Z2CJ).EI
CO TO 20

35 J.J~l
IF (J.CT.JOIN) RETURN

30 IF (YY(J)-Y(f)) 21,41,45
41 ZZ(J)-ZCI)

CO TO 35
45 IF (YY(J)-YCI+1)) $5,61I65
65 1.1*1

IF (1+1.6T.N) 00 TO 5I
Go TO0 35

Go TO 35
55 CALL AVTAN2 ((, .()Y()2()YI1.~)21l.()

CO TO 35
78 J-1
51 00 75 L-JJOIN
?5 22CL).E2

RETURN
END
SUBROUTINE AVTAM2 (A2.Al.YY.ZZ.Y2.YI.22,21)

C
C THIS SUSROUTINE It THE AVERAGE TANGENTS ALGORITHM FOR EVENLY SPACED DATA.
C

DY.Y2-Yl
02-22-21
A-C Al .OY.A2*DY-2 .5.D? )v'DY**3)
9-3.3SDZ-2 UeAI.DY-A2eDY)/(DYeeI)
C-111
v.YY-Yl
ZZ.A*Yo*3*U.Yo*2+C0Y*2l
RETURN
END
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Appendix G

PROGRAM SECTION

G.I Function

To produce a cross-section across a grid of points.

G.2 Dimensions of arrays

x
Y maximum number of points required in a cross-section
Z
1W

ZT 4

ZZ number of points in a row in the grid, 4.

C.3 Program units

Subroutine AVTAN : average tangents algorithm for uniformly spaced data.

In addition the following standard FORTRAN functions are called:

FLOAT converts integer to floating point

IFIX integer value nearer to zero.

G.4 Input/output

Input via FORTRAN channel I : Co-ordinates of top left corner of grid and grid

spacing.

Co-ordinates of the two end points of the required

cross-section.

Number of points required in the cross-section.

Input via FORTRAN channel 5 : The input grid (formatted as output by MAPGRID).

Output via FORTRAN channel 6 Number of points in the cross-section and the

x and y co-ordinates and the height of the

points in the cross-section.

G.5 Listing of program SECTION
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PAGE 0891
C

C
C **.PROGRAM SECTION e.
C

DIMENSION ZZ( lI55.4),X(2181),Y(2118),Z(2131),ZT(4). IV(2118)
C
C INPUT CO-ORDINATES OF THE TOP LEFT HAND CORNER OF GRID AND THE GRID
C SPACING
C

READ (1.11) XI~yE.W
C
C INPUT THE CO-ORDINATES OF THE TWO ENDS OF THE REQUIRED CROSS-SECTION
C

READ ( 1, 12) XlYI..X2oY2
C
C INPUT NUMBER OF POINTS REQUIRED IN THE CROSS-SECTION. IF THE NUMBER IS
C LESS THAN 2 THE PROGRAM CHOOSES A NUMBER BASED ON THE GRID SPACING
C

READ ( 1,13 ) IPTS
C
C CHANCE DIRECTION OF CUT IF YI.LT.Y2
C

IDIRN=1
IF (YI.GE.Y2) GO TO 5
DUMmXI
XIwX2
X2mOUM
DUMmYI
YIwY2
Y2UDUM
IDIRN--1

5 CONTINUE
C
C CALCULATE POINTS AT WHICH INTERPOLATED VALUES ARE REQUIRED
C

IF (IPTS.GE.2) GO TO 11
D=((X2-X)1)*2+(Y2-YI )**2).'sU.S
IPTS. IFIX( D/U )el

IN SXs(X2-Xl)/'FLOAT(IPTS-1)
SYu(Y2-YI)1'FLOAT(IPTS-1)
DO 15 1.1,IPTS
I((I )=XI+FLOATCI-1)*SX

15 Y(I )=Y14FLOAT(1-1)*$Y

C PERFORM INTERPOLATION
C

READ (5,51) IDIN,JDIM
DO 21 K.1.4

26 READ (5,52) (ZZ(IK),Io1.IDIN)
Jm2
YluYl+FLOAT( IDIN-l )*V
DO 25 Lul.IPTS
IXwIFIX( (X(L)-KU )/W)4I

XREL.((X(L)-XU)/W)-FLOAT(IFIX((X(L)-XU)/M))
YREL.((YU-Y(L))/V)-FLOAT(IFIX((YU-Y(L))/W))
IF (IXILT.2) GO TO 55
IF (IX.GT.IDIN-2) GO TO 55
IF (IY.LT.2) GO TO 55
IF (IY.GT.'JDIN-2) GO TO 55

31 IF (IY.EQ.J) GO TO 41
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PAGE 1eta

DO 33 K- 1,3
DO 35 I11 10TH

35 22Z .IK ).ZZ( I, 1.I)
J -J .1
READ (3,32) (ZZ(I,4),1.I,IDIN)
Co TO is

41 DO 45 X-1,4
21.2,( IX-2#K. I)

Z3.ZZ'( I)-2*,,,3)
Z4.ZZ( IX-2*K,4)

45 CALL AVIAN (ZIZ2,Z3,Z4,VlEL4TR())
CALL AVIAN (ZT(I),ZT(2),2T(3).ZT(4).NREL.ZtI)
DO 58 X-1,4
ZI.ZZ( IX-I.K)
Z2-Z'( IXK)

Z4.'Z( IX*2.K)
5I CALL AVIAN (ZIZ2.Z3.Z4,XREL,2T(K))

CALL AYTAH (ZT(2),ZT(2),ZT(3),ZT(4).YREL,ZT2)
Z(L -c ZT 14272)/2 1
I W( L ) -I
CO TO 25

55 Z(L)- I
IVW( L. )-G

25 CONTINUE
C
C OUTPUT DATA (DEPENDS UPON WH4ETHER THE DIRECTTON OF THE CUT WAS REVERSED)
C

L-8
68 L.L~1

IF (IW(L) EQ 1) CO TO 68
CRAD.Z(L41 )-Z(L )
L MAX* L -
DO 65 LL.I,LMAX

65 Z(LL).2( L)-FLOAT(L-LL )*GlA0
78 L-L+I

IF (IU(L) EQ 1) GO TO 71
CRAD.Z(L-I )-Z(L-2)
DO 75 LL.L.JPTS

?5 Z(LL ).Z( L- I)-RADOFLORT(LL-L* )
WRITE (6,61) IPTS
IF (IDIRN E0.1) GO TO 05
DO elI -I,IPTS
KI.-IPTS4I- I

91 WRITE (6,62?) X( 11),Y(I11),Z(11)
STOP

95 DO 92 I-I,IPT9
98 WRITE (6,62) X( I ),V IC I)Z( I)

STOP
C
C INPUT/OUTPUT FORMATS
C

11 FORMAT (3F6 2)
12 FORMAT (4F6 2)
13 FORMAT (14)

51 FORMAT ( I3,IX.13)
52 FORMAT ( 12F6 I)
61 FORMAT (14)
62 FORMAT ( 3F6 1)

END
SUBROUTINE AVTAN (21.22,232Z4, YV. 2)

c THIS SIP OUTINE IS THE AVERAGE TANGEHTS ALGORITHM FOR UNITY
C SPACED A.TA POINTS
C

At.(Z3-ZI)12 I
A2-(Z4-Z2)12 I
02-23-22
A.(Al#A2-2 I.DZ)
0-(3 8.02-A?-? f*Al)
C-Al
ZZ.A*YY6*3*9*YY02*CY+.2
RETURN
END
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Fig 7 Magnitude of the differences between the program and the analytic
~grids using method 2 section 4.4
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Fig 8 Magnitude of the differences between the program and the analytic
grids using method 3 section 4.4
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Fig 10 Final grid produced by combining those shown in Figs 4 and 5
using method 3 section 4.4
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Fig 12
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Fig 12 Geometry of operation of program MAPGRID on circular contours
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Numbers shown represent (weighting value x20) rounded to the lower integer

Fig 13 Weighting values associated with each point of the final grid
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Fig 15a&b

Base level 0

a Original contour map
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- -False contour 0~height <1----

b Contour map with false contours added

Fig 15a&b Introduction of false contours



Fig 16
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Fig 16 Geometry of the interpolation performed by program SECTION
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Fig 17 Grid lines crossing a contour when a contour changes direction
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